Semantic Similarity Graphs of Mathematics Word Problems: Can Terminology Detection Help?
نویسندگان
چکیده
Curricula often lack metadata to characterize the relatedness of concepts. To investigate automatic methods for generating relatedness metadata for a mathematics curriculum, we first address the task of identifying which terms in the vocabulary from mathematics word problems are associated with the curriculum. High chance-adjusted interannotator agreement on manual identification of math terms was achieved by considering terms in their contexts. These terms represent 13% of the vocabulary in one seventh grade mathematics text. Six classification algorithms were compared to classify math terms for this text. To avoid overfitting to this curriculum, we relied on a small number of features that exploit external knowledge sources.
منابع مشابه
Semantic Graphs for Mathematics Word Problems based on Mathematics Terminology
We present a graph-based approach to discover and extend semantic relationships found in a mathematics curriculum to more general network structures that can illuminate relationships within the instructional material. Using words representative of a secondary level mathematics curriculum we identified in separate work, we constructed two similarity networks of word problems in a mathematics tex...
متن کاملWalk-based Computation of Contextual Word Similarity
We propose a new measure of semantic similarity between words in context, which exploits the syntactic/semantic structure of the context surrounding each target word. For a given pair of target words and their sentential contexts, labeled directed graphs are made from the output of a semantic parser on these sentences. Nodes in these graphs represent words in the sentences, and labeled edges re...
متن کاملDesign and implementation of Persian spelling detection and correction system based on Semantic
Persian Language has a special feature (grapheme, homophone, and multi-shape clinging characters) in electronic devices. Furthermore, design and implementation of NLP tools for Persian are more challenging than other languages (e.g. English or German). Spelling tools are used widely for editing user texts like emails and text in editors. Also developing Persian tools will provide Persian progr...
متن کاملLearning Word Representations from Relational Graphs
Attributes of words and relations between two words are central to numerous tasks in Artificial Intelligence such as knowledge representation, similarity measurement, and analogy detection. Often when two words share one or more attributes in common, they are connected by some semantic relations. On the other hand, if there are numerous semantic relations between two words, we can expect some o...
متن کاملLanguage classification from bilingual word embedding graphs
We study the role of the second language in bilingual word embeddings in monolingual semantic evaluation tasks. We find strongly and weakly positive correlations between down-stream task performance and second language similarity to the target language. Additionally, we show how bilingual word embeddings can be employed for the task of semantic language classification and that joint semantic sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015